

### Danfoss - Aftermarket Workflow and Process Creation and Implementation

### Team:504

#### **Team Introductions**

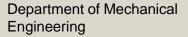






David Bishop Manufacturing Engineer

Alex Wilson Process Engineer




Kyle Youmans Control Engineer



Julian Villamil *Test Engineer* 

David Bishop





#### **Sponsor and Advisor**





Engineering Mentor Shayne McConomy, Ph.D Professor



<u>Project Advisor</u> Yousuf Ali, Ph.D. *Professor* 



Engineering Mentor Stephen Seymore Operations Engineer Director

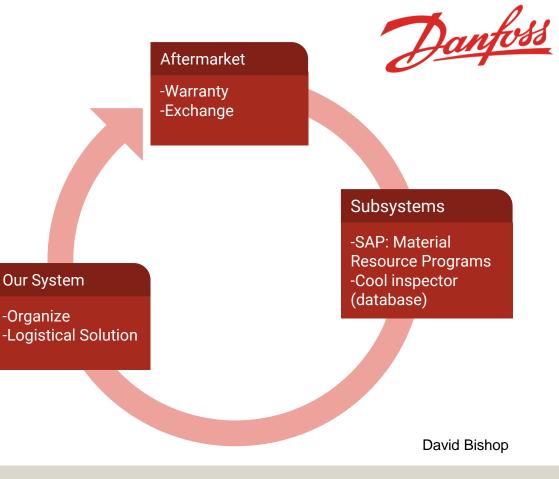
David Bishop







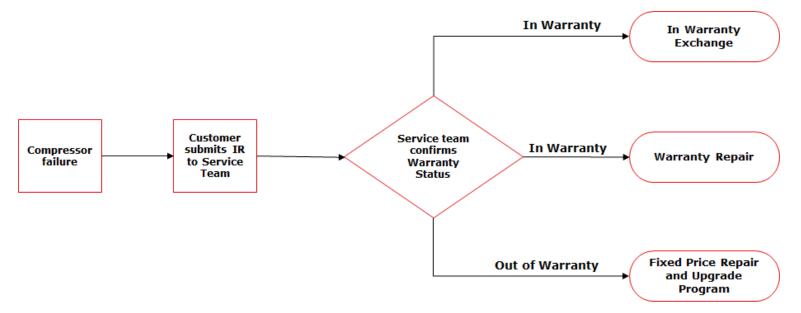
# **Previous Work Recap**


David Bishop

FAMU-FSU Engineering



### **Project Objective**


"A system that coordinates existing record keeping subsystems to organize aftermarket production, preventing aftermarket parts from entering into new production. The system is automated and more effective than older subsystems."

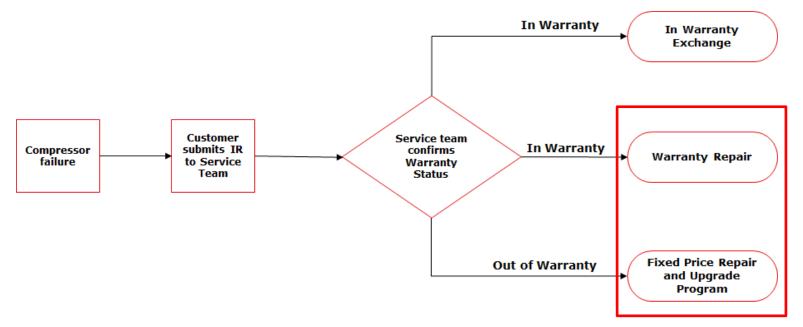




### **Future Aftermarket Repair Programs**






David Bishop





### **Future Aftermarket Repair Programs**





David Bishop







David Bishop



### **Interpreted Needs**



#### Organization

The system needs to catalog and store data in an organized way.

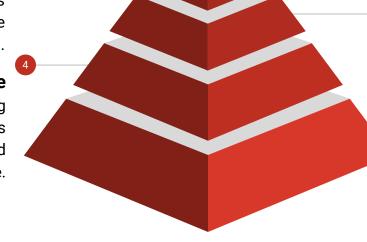
#### Quality

Aftermarket compressors are shipped back to their customers at the same level of performance or higher based on the bill of materials generated by the system

#### Adaptability

System is easily updated as software changes and input information changes

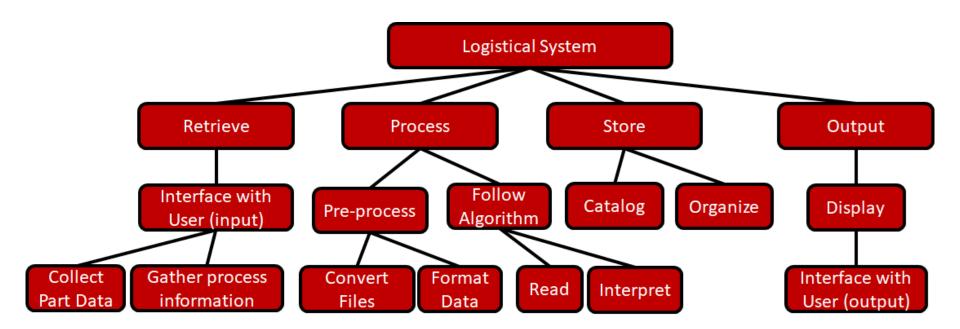
David Bishop




#### Automation

The system is more robust than the current process with fewer human errors due to an automated design.

#### **User Experience**


System is capable of providing its outputs in a format that is accessible and easily understood by a common audience.





### **Functional Flow Chart**





David Bishop



### Project Overview Following the "McConomy" Method







#### **Targets and Metrics**

How to validate functions?

- Analyzing subfunctions
- Relate subfunctions to a target and metric

**Concept Generation** 

Creative thinking to produce possible concepts

- Concept generation tools
- High and medium fidelity concepts



#### **Concept Selection**

Determining the best fit solution

- Quality Function
  Deployment
- Pugh charts
- Analytical hierarchy
  process

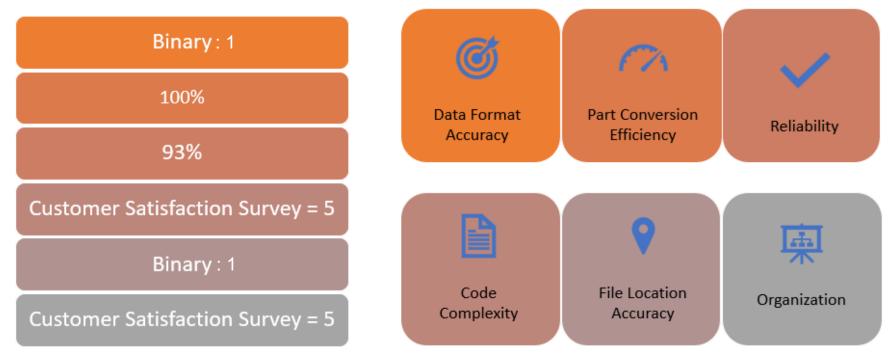
David Bishop



Department of Mechanical Engineering

11




# **Targets and Metrics**

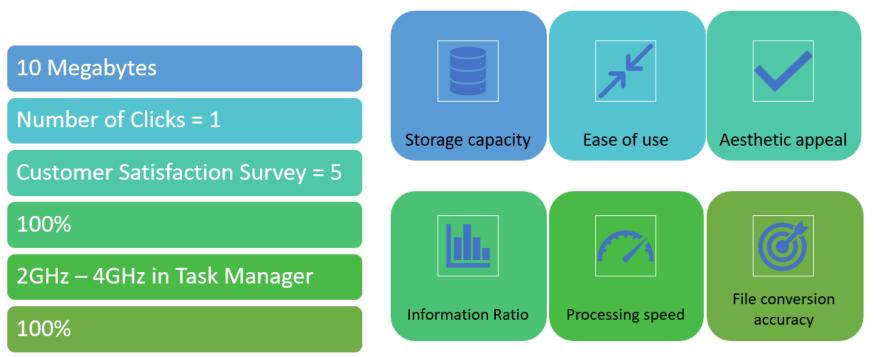
David Bishop



### **Targets and Metrics**






David Bishop





### **Targets and Metrics**





David Bishop



# **Critical Targets and Metrics**

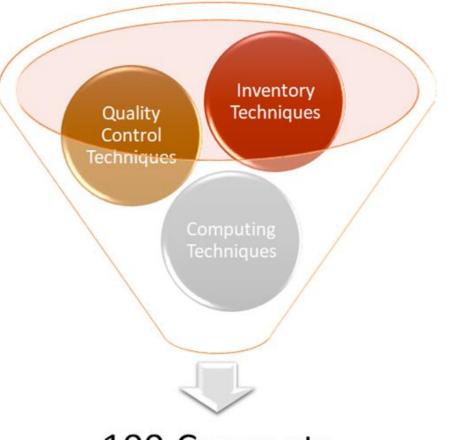
Storage

- Need enough storage space to:
  - Retrieve data
  - Run System
  - Store Data
- Target 10MB file I/O size

### Reliability

- Needs to work better than current method:
  - Reduce human errors
  - Increase part
    replacement accuracy
- Target 93% reliability








# **Concept Generation**

Julian Villamil









#### **100 concepts**





Julian Villamil





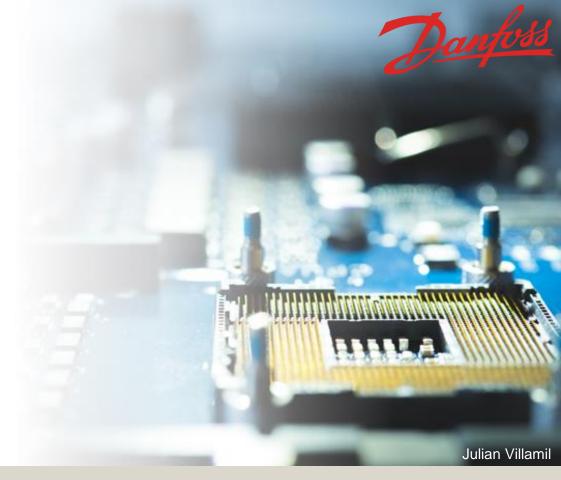


# **High Fidelity Concepts**

Julian Villamil






#### Script and Database Design



CREATE DATABASE







Department of Mechanical Engineering



20

### Filing System

- Manufacturing engineering solution
  - New responsibilities
    - Investigations
    - Planners
    - Manufacturing Engineers
  - Filing System
    - Part Failure File
    - Part Replacements file
  - Open Loop







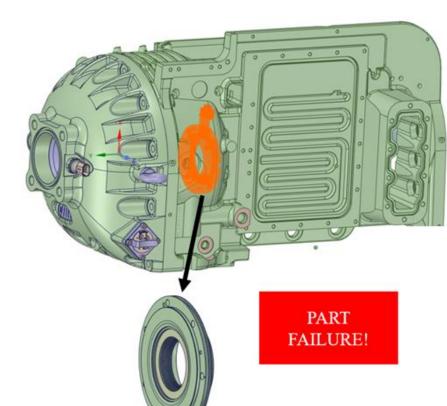
. .

21





Ľ


BILL OF MATERIALS

Julian Villamil

CAD COMPARISON



Danfoss



### **Concept 3**

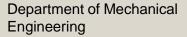
PART FAILURE

**INPUT FILES** 

**GRAPHIC USER** 

INTERFACE




# **Medium Fidelity Concepts**

Julian Villamil





Julian Villamil





24

### Virtual Compressor Logs

- Virtual work space where all aftermarket teams meet.
  - Streamlines information
  - Updates on real time
  - Advanced filing



Julian Villamil







# Danfoss

#### Artificial Intelligence

- Advanced script that updates itself after every run.
  - Increases correct part replacement accuracy.
- Can convert handwritten data into digital data.
- Compressor repair data trains AI.
  - Tells AI everything not to try.
  - Helps AI make better part replacements.



Julian Villamil





Material Resource Planning System

- MRP ensures there will always be parts available.
- No transfer of data outside their SAP cloud.
- Records parts requested for part replacement planning.



Julian Villamil

Dantos





#### **Digital Part Library**

- Search engine
  - Search bar
  - File directory based
  - Extensive library
- Part replacement
  - Provides part information
  - Filtering features
  - Records successful repairs





Julian Villamil





### **Concept Selection**

Julian Villamil



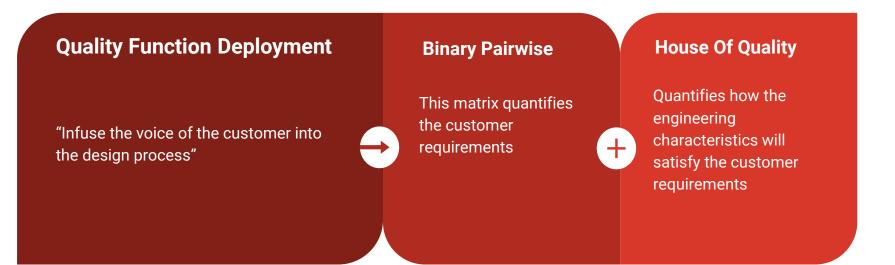
### **Concept Selection**



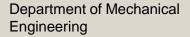


Julian Villamil









Julian Villamil







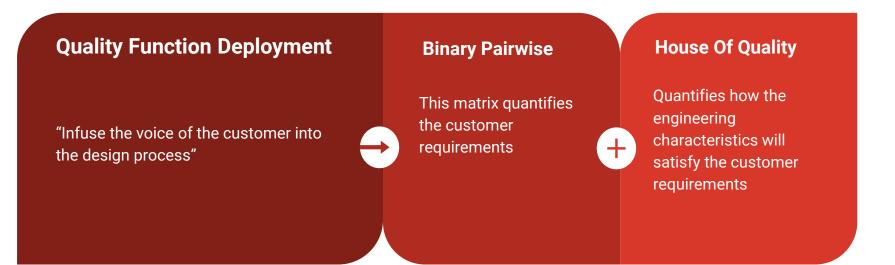
Julian Villamil



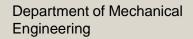


32




|                                                               |                                                        | Customer<br>Requirement | Weight<br>Factor |
|---------------------------------------------------------------|--------------------------------------------------------|-------------------------|------------------|
| Quality Function Deployment                                   | Binary Pairwise                                        | Organization            | 4                |
| "Infuse the voice of the customer into<br>the design process" | This matrix quantifies<br>the customer<br>requirements | Automate                | 3                |
|                                                               |                                                        | Quality<br>Control      | 2                |
|                                                               |                                                        | User<br>Experience      | 0                |
|                                                               |                                                        | Adaptability            | 1                |

Julian Villamil










Julian Villamil







| Engineering<br>Characteristics | Rank |
|--------------------------------|------|
| Speed (sec)                    | 8    |
| Storage Capacity (bytes)       | 7    |
| Accuracy (%)                   | 2    |
| Usability                      | 3    |
| Aesthetic                      | 5    |
| Maintainability                | 4    |
| Simplicity                     | 6    |
| Reliability (%)                | 1    |

#### **House Of Quality**

Quantifies how the engineering characteristics will satisfy the customer requirements

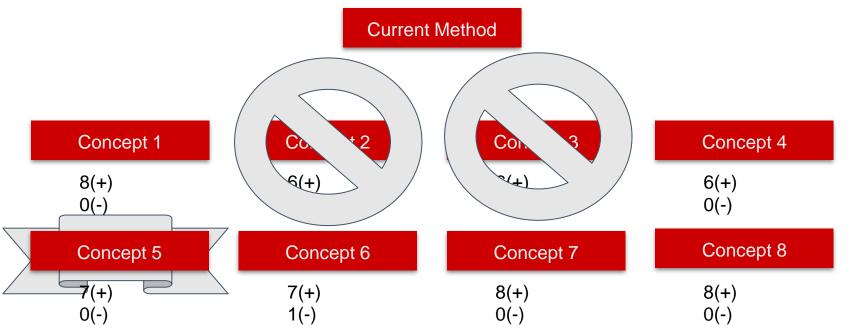
Julian Villamil

Department of Mechanical Engineering



35

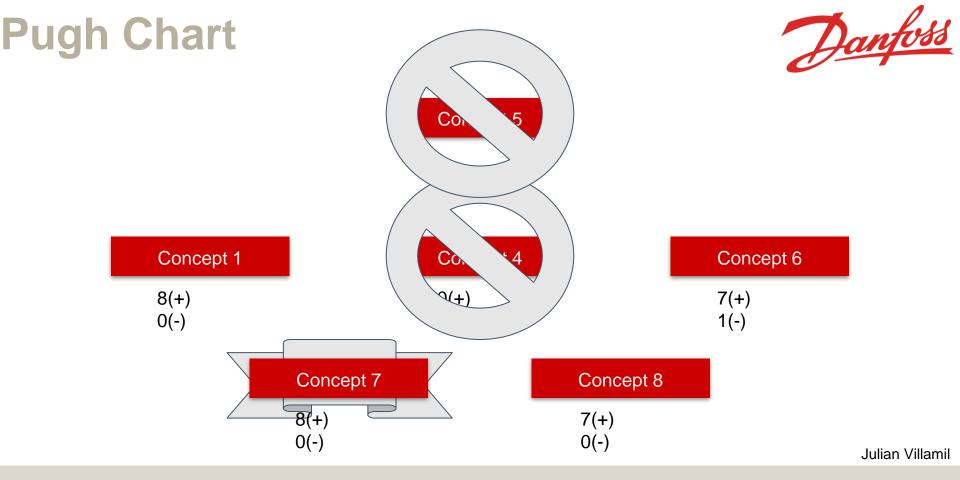



# **Pugh Charts**

Julian Villamil



## **Pugh Chart**

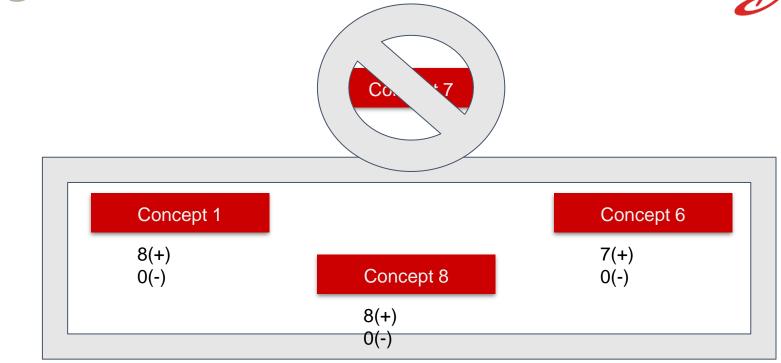




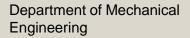

Julian Villamil

Department of Mechanical Engineering






Department of Mechanical Engineering




## **Pugh Chart**

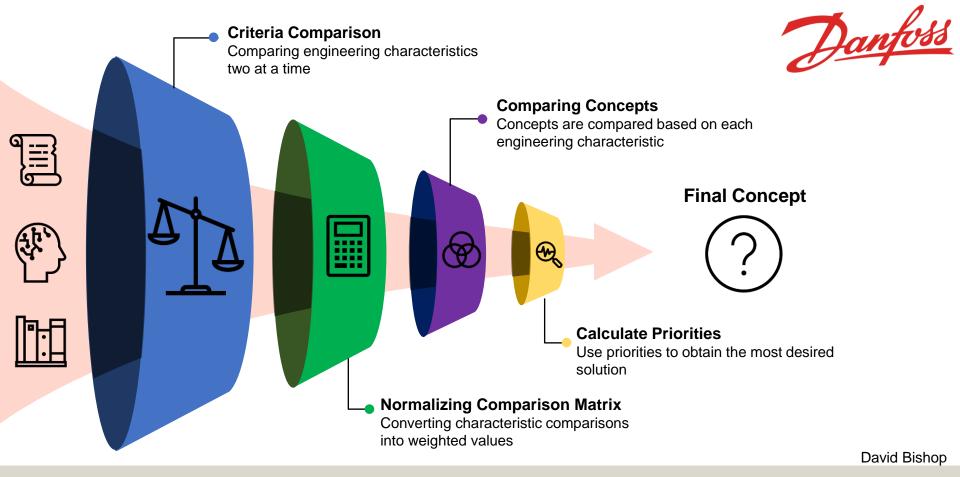




Julian Villamil








# **Analytical Hierarchy Process**

David Bishop







Department of Mechanical Engineering



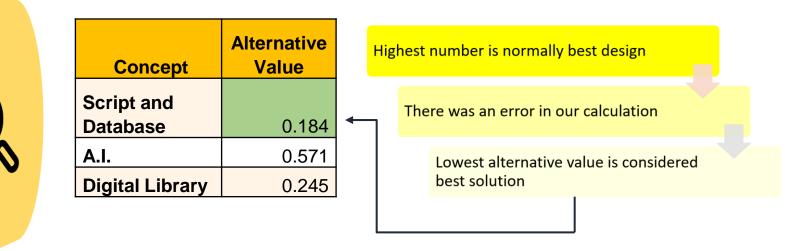


| Concept         | Alternative<br>Value |
|-----------------|----------------------|
| Script and      |                      |
| Database        | 0.184                |
| A.I.            | 0.571                |
| Digital Library | 0.245                |

Highest number is normally best design

There was an error in our calculation

Lowest alternative value is considered best solution

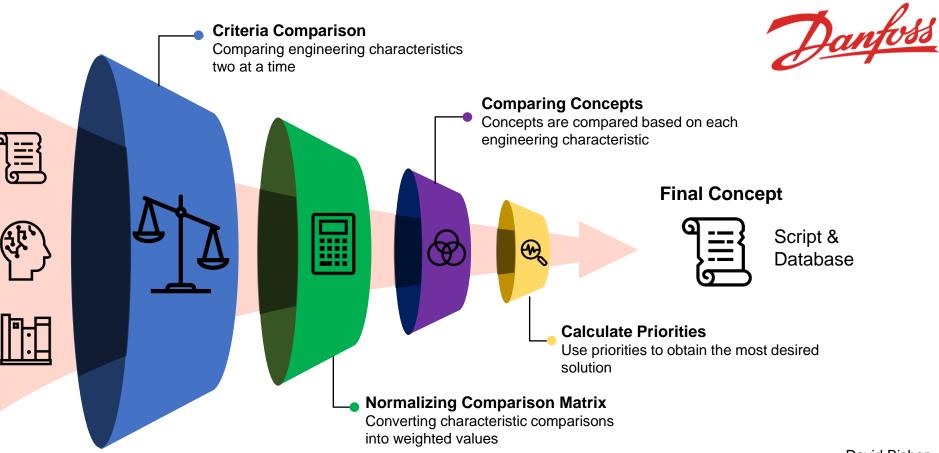

Calculate Priorities

Use priorities to obtain the most desired solution

David Bishop








#### Calculate Priorities

Use priorities to obtain the most desired solution

David Bishop





David Bishop

44







### Reference



- Seymore, Stephen. (2020). Aftermarket Services Danfoss Turbocor<sup>®</sup> Compressors. [PowerPoint slides]. Retrieved from https://3.basecamp.com/3939307/buckets/18515621/uploads/3119943154
- [2] McConomy, Shayne. (2020). Aftermarket Workflow Project 2020. [Word document]. Retrieved from https://3.basecamp.com/3939307/buckets/18515621/uploads/3078752695
- Bishop et al. (2020). SD T504 201106 Concept Generation and Selection. [Word document]. Retrieved from https://famu-fsu-eng.instructure.com/courses/4476/assignments/18861/submissions/102840000000613 46
- Seymore, Stephen. (2020). Special Compressor Process. Danfoss Turbocor<sup>®</sup>. [PDF file]. Retrieved from https://3.basecamp.com/3939307/buckets/18515621/uploads/3119943196



### **Questions?**





Department of Mechanical Engineering





# **Backup Slides**

Department of Mechanical Engineering



## **Morphological Chart**



| Morphological Chart      |                    |                |                      |  |  |  |  |  |
|--------------------------|--------------------|----------------|----------------------|--|--|--|--|--|
| Coding Language          | Python             | MATLAB         | С                    |  |  |  |  |  |
| Quality Control Method   | Pareto<br>Analysis | Stratification | Statistical Sampling |  |  |  |  |  |
| Inventory Control Method | Six Sigma          | Drop shipping  | Lean Manufacturing   |  |  |  |  |  |

FAMU-FSU Engineering



## **Binary Pairwise**



#### Binary Pairwise Graph

|                       | 1 | 2 | 3 | 4 | 5 | Total |
|-----------------------|---|---|---|---|---|-------|
| 1. Organization       | - | 1 | 1 | 1 | 1 | 4     |
| 2. Automate           | 0 | - | 1 | 1 | 1 | 3     |
| 3.Quality<br>Control  | 0 | 0 | - | 1 | 1 | 2     |
| 4. User<br>Experience | 0 | 0 | 0 | - | 0 | 0     |
| 5. Adaptability       | 0 | 0 | 0 | 1 | - | 1     |
| Total                 | 0 | 1 | 2 | 4 | 3 | 10    |



## **House of Quality**



| House of Quality         | 7                           |                             |                     |          |           |           |                 |            |             |  |
|--------------------------|-----------------------------|-----------------------------|---------------------|----------|-----------|-----------|-----------------|------------|-------------|--|
|                          |                             | Engineering Characteristics |                     |          |           |           |                 |            |             |  |
| Improvement<br>Direction |                             | ↑                           | ↑                   | Ŷ        | ↑         | Ŷ         | Ŷ               | ↑          | Ŷ           |  |
|                          | Units                       | sec                         | b <b>y</b> te       | %        | n/a       | n/a       | n/a             | n/a        | %           |  |
| Customer<br>Requirements | Importance<br>Weight Factor | Speed                       | Storage<br>Capacity | Accuracy | Usability | Aesthetic | Maintainability | Simplicity | Reliability |  |
| Organizes                | 5                           | 1                           | 3                   | 9        | 1         | 1         | 3               | 1          | 9           |  |
| Automate                 | 4                           | 1                           | 0                   | 1        | 9         | 0         | 9               | 1          | 3           |  |
| Controls Quality         | 3                           | 0                           | 1                   | 9        | 1         | 0         | 3               | 3          | 9           |  |
| Interacts with<br>User   | 2                           | 0                           | 1                   | 1        | 9         | 9         | 0               | 3          | 1           |  |
| Adaptible                | 1                           | 0                           | 3                   | 1        | 9         | 1         | 9               | 3          | 3           |  |
| Raw Scor                 | e (391)                     | 9                           | 23                  | 79       | 71        | 24        | 69              | 27         | 89          |  |
| Relative W               | /eight%                     | 2.30%                       | 5.88%               | 20.20%   | 18.16%    | 6.14%     | 17.65%          | 6.91%      | 22.76%      |  |
| Rank O                   | Irder                       | 8                           | 7                   | 2        | 3         | 5         | 4               | 6          | 1           |  |

Department of Mechanical Engineering





## First Pugh Chart

|                  |                        |   |   |   | С | oncept | ts |   |   |
|------------------|------------------------|---|---|---|---|--------|----|---|---|
| Selec            | ction Criteria         | 1 | 2 | 3 | 4 | 5      | 6  | 7 | 8 |
| Speed            |                        | + | + | + | + | +      | +  | + | + |
| Storage Capacity |                        | + | - | - | S | S      | -  | + | + |
| Accuracy         |                        | + | + | + | + | +      | +  | + | + |
| Usability        | Datum (Current Method) | + | + | + | + | +      | +  | + | + |
| Aesthetic        |                        | + | + | + | S | +      | +  | + | + |
| Maintainability  |                        | + | + | + | + | +      | +  | + | + |
| Simplicity       |                        | + | - | - | + | +      | +  | + | + |
| Reliability      |                        |   | + | + | + | +      | +  | + | + |
| Pluses           |                        | 8 | 6 | 6 | 6 | 7      | 7  | 8 | 8 |
| Minuses          |                        |   | 2 | 2 | 0 | 0      | 1  | 0 | 0 |

Department of Mechanical Engineering



## Second Pugh Chart

|                  |                   |   | Co | ncepts |   |   |
|------------------|-------------------|---|----|--------|---|---|
| Selection        | n Criteria        | 1 | 4  | 6      | 7 | 8 |
| Speed            |                   | + | S  | +      | + | + |
| Storage Capacity |                   | + | -  | -      | + | S |
| Accuracy         |                   | + | -  | +      | + | + |
| Usability        | Datum (Concept 5) | + | -  | +      | + | + |
| Aesthetic        |                   | + | -  | +      | + | + |
| Maintainability  |                   | + | -  | +      | + | + |
| Simplicity       |                   | + | -  | +      | + | + |
| Reliability      |                   | + | -  | +      | + | + |
| Ph               | 8                 | 0 | 7  | 8      | 7 |   |
| Mir              | nuses             | 0 | 7  | 1      | 0 | 0 |



Department of Mechanical Engineering



## Third Pugh Chart

|                  |                   |   | Concepts | 5 |
|------------------|-------------------|---|----------|---|
| Selection        | n Criteria        | 1 | 6        | 8 |
| Speed            |                   | S | +        | - |
| Storage Capacity |                   | S | -        | S |
| Accuracy         |                   | + | +        | S |
| Usability        | Datum (Concept 7) | - | +        | S |
| Aesthetic        |                   | S | S        | S |
| Maintainability  |                   | - | +        | + |
| Simplicity       |                   | + | -        | + |
| Reliability      |                   | + | +        | S |
| Ph               | 3                 | 5 | 2        |   |
| Mir              | nuses             | 1 | 2        | 1 |



Department of Mechanical Engineering



## Target Catalog

| Metric                                              | Target                                                                 |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|
| Storage Capacity                                    | 0 < x < 10 Megabytes                                                   |  |  |  |  |
| Ease of Use                                         | Number of clicks by user<br>1                                          |  |  |  |  |
| Aesthetic Appeal                                    | 1-5 (customer satisfaction survey)<br>5                                |  |  |  |  |
| Information Obtained to Total Information<br>Needed | 100%                                                                   |  |  |  |  |
| Processing Speed                                    | 2 GHz to 4.0 GHz                                                       |  |  |  |  |
| File Conversion Accuracy                            | Files converted to files requested 100%                                |  |  |  |  |
| Data Format Accuracy                                | File matches column and row assigned<br>Binary (1-0)                   |  |  |  |  |
| Part Conversion Efficiency                          | Ratio of parts exchanged correctly to total parts<br>exchanged<br>100% |  |  |  |  |
| Reliability                                         | Below 7% average failure rate                                          |  |  |  |  |
| Code Complexity                                     | 1-5 (customer satisfaction survey)<br>5                                |  |  |  |  |
| File Location Accuracy                              | Files placed in the correct location<br>Binary (1-0)                   |  |  |  |  |
| Organization                                        | 1-5 (customer satisfaction survey)<br>5                                |  |  |  |  |
|                                                     |                                                                        |  |  |  |  |





## Customer Survey



| Customer Satisfaction Survey                                         |     |        |        |        |      |  |  |
|----------------------------------------------------------------------|-----|--------|--------|--------|------|--|--|
| Question                                                             | Orc | ler of | f Sati | isfact | tion |  |  |
| 1 = unacceptable 2 = poor 3 = satisfactory<br>4 = good 5 = excellent | 1   | 2      | 3      | 4      | 5    |  |  |
| How aesthetically appealing is the display of the product?           |     |        |        |        |      |  |  |
| Is the code readable, organized, and reproducible?                   |     |        |        |        |      |  |  |
| How does the product compare to the previously used method?          |     |        |        |        |      |  |  |





| Criteria Comparison Matrix [C] |       |          |         |          |           |                 |             |            |
|--------------------------------|-------|----------|---------|----------|-----------|-----------------|-------------|------------|
|                                |       | Storage  | Accurac | Usabilit |           |                 |             | Reliabilit |
|                                | Speed | Capacity | у       | у        | Aesthetic | Maintainability | Compactness | у          |
| Speed                          | 1     | 3        | 5       | 3        | 0.33      | 5               | 3           | 5          |
| Storage Capacity               | 0.33  | 1        | 5       | 0.33     | 0.20      | 3               | 1           | 3          |
| Accuracy                       | 0.20  | 0.20     | 1       | 0.33     | 0.20      | 0.33            | 0.33        | 1          |
| Usability                      | 0.33  | 3        | 3       | 1        | 0.33      | 3               | 1           | 3          |
| Aesthetic                      | 3     | 5        | 5       | 3        | 1         | 5               | 5           | 5          |
| Maintainability                | 0.20  | 0.33     | 3       | 0.33     | 0.20      | 1               | 0.33        | 1          |
| Compactness                    | 0.33  | 1        | 3       | 1        | 0.20      | 3               | 1           | 3          |
| Reliability                    | 0.20  | 0.33     | 1       | 0.33     | 0.20      | 1               | 0.33        | 1          |
| Sum                            | 5.60  | 13.87    | 26      | 9.33     | 2.67      | 21.33           | 12          | 22         |





|                  | Normalized Criteria Comparison Matrix |                     |          |           |           |                 |             |             |                           |
|------------------|---------------------------------------|---------------------|----------|-----------|-----------|-----------------|-------------|-------------|---------------------------|
|                  | Speed                                 | Storage<br>Capacity | Accuracy | Usability | Aesthetic | Maintainability | Compactness | Reliability | Criteria<br>Weight<br>(W) |
| Speed            | 0.179                                 | 0.216               | 0.192    | 0.321     | 0.125     | 0.234           | 0.250       | 0.227       | 0.218                     |
| Storage Capacity | 0.060                                 | 0.072               | 0.192    | 0.036     | 0.075     | 0.141           | 0.083       | 0.136       | 0.099                     |
| Accuracy         | 0.036                                 | 0.014               | 0.038    | 0.036     | 0.075     | 0.016           | 0.028       | 0.045       | 0.036                     |
| Usability        | 0.060                                 | 0.216               | 0.115    | 0.107     | 0.125     | 0.141           | 0.083       | 0.136       | 0.123                     |
| Aesthetic        | 0.536                                 | 0.361               | 0.192    | 0.321     | 0.375     | 0.234           | 0.417       | 0.227       | 0.333                     |
| Maintainability  | 0.036                                 | 0.024               | 0.115    | 0.036     | 0.075     | 0.047           | 0.028       | 0.045       | 0.051                     |
| Compactness      | 0.060                                 | 0.072               | 0.115    | 0.107     | 0.075     | 0.141           | 0.083       | 0.136       | 0.099                     |
| Reliability      | 0.036                                 | 0.024               | 0.038    | 0.036     | 0.075     | 0.047           | 0.028       | 0.045       | 0.041                     |
| Sum              | 1                                     | 1                   | 1        | 1         | 1         | 1               | 1           | 1           | 1                         |



| Consistency Check   |                      |                      |  |  |  |  |  |  |
|---------------------|----------------------|----------------------|--|--|--|--|--|--|
|                     |                      |                      |  |  |  |  |  |  |
|                     |                      |                      |  |  |  |  |  |  |
| $\{Ws\}=[C]\{W\}$   |                      | $Cons=\{Ws\}./\{W\}$ |  |  |  |  |  |  |
| Weighted Sum Factor | {W} Criteria Weights | Consistency Vector   |  |  |  |  |  |  |
| 1.932               | 0.218                | 8.854                |  |  |  |  |  |  |
| 0.834               | 0.099                | 8.393                |  |  |  |  |  |  |
| 0.298               | 0.036                | 8.274                |  |  |  |  |  |  |
| 1.087               | 0.123                | 8.841                |  |  |  |  |  |  |
| 2.986               | 0.333                | 8.969                |  |  |  |  |  |  |
| 0.417               | 0.051                | 8.221                |  |  |  |  |  |  |
| 0.844               | 0.099                | 8.553                |  |  |  |  |  |  |
| 0.345               | 0.041                | 8.391                |  |  |  |  |  |  |



#### $\lambda$ =8.562 CI= ( $\lambda$ -n)/(n-1) = (8.562-8)/(8-1)=.0803 CR= CI/RI=.0803/1.4=.0574

**CR < 0.1** 



| Speed Comparison Norm |            |       |         |             |
|-----------------------|------------|-------|---------|-------------|
|                       |            |       |         | Design      |
|                       | Script and |       | Digital | Alternative |
|                       | Database   | A.I.  | Library | Priorities  |
| Script and Database   | 0.091      | 0.130 | 0.048   | 0.090       |
| A.I.                  | 0.455      | 0.652 | 0.714   | 0.607       |
| Digital Library       | 0.455      | 0.217 | 0.238   | 0.303       |
| Sum                   | 1          | 1     | 1       | 1           |

| Consistency Check           |              |                                |  |  |
|-----------------------------|--------------|--------------------------------|--|--|
| {Ws}=[C]{W}<br>Weighted Sum | {W} Criteria | Cons={WS}./{<br>W} Consistency |  |  |
| Factor                      | Weights      | Vector                         |  |  |
| 0.272                       | 0.090        | 3.031                          |  |  |
| 1.965                       | 0.607        | 3.238                          |  |  |
| 0.954                       | 0.303        | 3.145                          |  |  |

λ=3.138 CI= (λ-n)/(n-1) = (8.562-3)/(3-1)=.069 CR= CI/RI=.0803/0.52=0.132





AHP

| Storage Capacity Comparison Norm |            |       |                 |             |  |
|----------------------------------|------------|-------|-----------------|-------------|--|
|                                  |            |       |                 | Design      |  |
|                                  | Script and |       |                 | Alternative |  |
|                                  | Database   | A.I.  | Digital Library | Priorities  |  |
| Script and Database              | 0.143      | 0.143 | 0.143           | 0.143       |  |
| A.I.                             | 0.714      | 0.714 | 0.714           | 0.714       |  |
| Digital Library                  | 0.143      | 0.143 | 0.143           | 0.143       |  |
| Sum                              | 1.000      | 1.000 | 1.000           | 1.000       |  |



| Consistency Check   |              |                  |  |  |
|---------------------|--------------|------------------|--|--|
|                     |              | Cons={WS}./      |  |  |
| $\{Ws\} = [C]\{W\}$ |              | $\{\mathbf{W}\}$ |  |  |
| Weighted Sum        | {W} Criteria | Consistency      |  |  |
| Factor              | Weights      | Vector           |  |  |
| 0.429               | 0.143        | 3                |  |  |
| 2.143               | 0.714        | 3                |  |  |
| 0.429               | 0.143        | 3                |  |  |

 $\lambda=3$ CI= ( $\lambda$ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0



| Usability Comparison Norm |            |       |         |             |
|---------------------------|------------|-------|---------|-------------|
|                           |            |       |         | Design      |
|                           | Script and |       | Digital | Alternative |
|                           | Database   | A.I.  | Library | Priorities  |
| Script and Database       | 0.231      | 0.217 | 0.333   | 0.260       |
| A.I.                      | 0.692      | 0.652 | 0.556   | 0.633       |
| Digital Library           | 0.077      | 0.130 | 0.111   | 0.106       |
| Sum                       | 1          | 1     | 1       | 1           |

| Consistency Check |              |                  |  |  |
|-------------------|--------------|------------------|--|--|
|                   |              | Cons={WS}./      |  |  |
| $\{Ws\}=[C]\{W\}$ |              | $\{\mathbf{W}\}$ |  |  |
| Weighted Sum      | {W} Criteria | Consistency      |  |  |
| Factor            | Weights      | Vector           |  |  |
| 0.790             | 0.260        | 3.033            |  |  |
| 1.946             | 0.633        | 3.072            |  |  |
| 0.320             | 0.106        | 3.011            |  |  |

λ=3.137 CI= (λ-n)/(n-1) = (3.137-3)/(3-1)=0.069 CR= CI/RI=0.069/0.52=0.132





| Accuracy Comparison Norm |            |     |                 |             |
|--------------------------|------------|-----|-----------------|-------------|
|                          |            |     |                 | Design      |
|                          | Script and | A.I |                 | Alternative |
|                          | Database   |     | Digital Library | Priorities  |
| Script and Database      | 0.143      | 0.2 | 0.077           | 0.140       |
| A.I.                     | 0.429      | 0.6 | 0.692           | 0.574       |
| Digital Library          | 0.429      | 0.2 | 0.231           | 0.286       |
| Sum                      | 1          | 1   | 1               | 1           |



| Consistency Check   |              |                  |  |
|---------------------|--------------|------------------|--|
|                     |              | Cons={WS}./      |  |
| $\{Ws\} = [C]\{W\}$ |              | $\{\mathbf{W}\}$ |  |
| Weighted Sum        | {W} Criteria | Consistency      |  |
| Factor              | Weights      | Vector           |  |
| 0.427               | 0.140        | 3.049            |  |
| 1.853               | 0.574        | 3.230            |  |
| 0.897               | 0.286        | 3.133            |  |

λ=3.039 CI= (λ-n)/(n-1) = (3.039-3)/(3-1)=0.019 CR= CI/RI=0.019/0.52=0.037



| Aesthetic Comparison Norm |            |     |                 |             |
|---------------------------|------------|-----|-----------------|-------------|
|                           | Design     |     |                 |             |
|                           | Script and | A.I |                 | Alternative |
|                           | Database   |     | Digital Library | Priorities  |
| Script and Database       | 0.2        | 0.2 | 0.2             | 0.2         |
| A.I.                      | 0.6        | 0.6 | 0.6             | 0.6         |
| Digital Library           | 0.2        | 0.2 | 0.2             | 0.2         |
| Sum                       | 1          | 1   | 1               | 1           |

| Consistency Check   |              |                  |  |  |
|---------------------|--------------|------------------|--|--|
|                     |              | Cons={WS}./      |  |  |
| $\{Ws\} = [C]\{W\}$ |              | $\{\mathbf{W}\}$ |  |  |
| Weighted Sum        | {W} Criteria | Consistency      |  |  |
| Factor              | Weights      | Vector           |  |  |
| 0.6                 | 0.2          | 3                |  |  |
| 1.8                 | 0.6          | 3                |  |  |
| 0.6                 | 0.2          | 3                |  |  |

 $\lambda=3$ CI= ( $\lambda$ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0







| Maintainability Comparison Norm |            |     |                 |             |
|---------------------------------|------------|-----|-----------------|-------------|
|                                 |            |     |                 | Design      |
|                                 | Script and | A.I |                 | Alternative |
|                                 | Database   | •   | Digital Library | Priorities  |
| Script and Database             | 0.2        | 0.2 | 0.2             | 0.2         |
| A.I.                            | 0.6        | 0.6 | 0.6             | 0.6         |
| Digital Library                 | 0.2        | 0.2 | 0.2             | 0.2         |
| Sum                             | 1          | 1   | 1               | 1           |

| Consistency Check   |              |                  |  |
|---------------------|--------------|------------------|--|
|                     |              | Cons={WS}./      |  |
| $\{Ws\} = [C]\{W\}$ |              | $\{\mathbf{W}\}$ |  |
| Weighted Sum        | {W} Criteria | Consistency      |  |
| Factor              | Weights      | Vector           |  |
| 0.6                 | 0.2          | 3                |  |
| 1.8                 | 0.6          | 3                |  |
| 0.6                 | 0.2          | 3                |  |

 $\lambda=3$ CI= ( $\lambda$ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0



| Compactness Comparison Norm |            |       |         |             |  |  |
|-----------------------------|------------|-------|---------|-------------|--|--|
|                             |            |       |         | Design      |  |  |
|                             | Script and |       | Digital | Alternative |  |  |
|                             | Database   | A.I.  | Library | Priorities  |  |  |
| Script and Database         | 0.231      | 0.429 | 0.2     | 0.286       |  |  |
| A.I.                        | 0.077      | 0.143 | 0.2     | 0.140       |  |  |
| Digital Library             | 0.692      | 0.429 | 0.6     | 0.574       |  |  |
| Sum                         | 1          | 1     | 1       | 1           |  |  |

| Consistency Check   |              |                  |  |  |  |
|---------------------|--------------|------------------|--|--|--|
|                     |              | Cons={WS}./      |  |  |  |
| $\{Ws\} = [C]\{W\}$ |              | $\{\mathbf{W}\}$ |  |  |  |
| Weighted Sum        | {W} Criteria | Consistency      |  |  |  |
| Factor              | Weights      | Vector           |  |  |  |
| 0.897               | 0.286        | 3.133            |  |  |  |
| 0.427               | 0.140        | 3.049            |  |  |  |
| 1.853               | 0.574        | 3.230            |  |  |  |

 $\lambda$ =3.137 CI= ( $\lambda$ -n)/(n-1) = (3.137-3)/(3-1)=0.069 CR= CI/RI=0.069/0.52=0.132



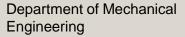


|   | field  |
|---|--------|
| H | anjoso |

| Reliability Comparison Norm |                     |     |                 |             |  |  |
|-----------------------------|---------------------|-----|-----------------|-------------|--|--|
|                             |                     |     |                 | Design      |  |  |
|                             |                     | A.I |                 | Alternative |  |  |
|                             | Script and Database |     | Digital Library | Priorities  |  |  |
| Script and Database         | 0.2                 | 0.2 | 0.2             | 0.2         |  |  |
| A.I.                        | 0.6                 | 0.6 | 0.6             | 0.6         |  |  |
| Digital Library             | 0.2                 | 0.2 | 0.2             | 0.2         |  |  |
| Sum                         | 1                   | 1   | 1               | 1           |  |  |

| Consistency Check    |              |              |  |  |  |
|----------------------|--------------|--------------|--|--|--|
|                      |              | Cons={WS}./{ |  |  |  |
| $\{Ws\} = [C] \{W\}$ |              | W}           |  |  |  |
| Weighted Sum         | {W} Criteria | Consistency  |  |  |  |
| Factor               | Weights      | Vector       |  |  |  |
| 0.6                  | 0.2          | 3            |  |  |  |
| 1.8                  | 0.6          | 3            |  |  |  |
| 0.6                  | 0.2          | 3            |  |  |  |

 $\lambda = 3$ CI= ( $\lambda$ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0






|               | Final Rating Matrix |       |                     |          |           |           |                 |             |             |
|---------------|---------------------|-------|---------------------|----------|-----------|-----------|-----------------|-------------|-------------|
| Selection     | Criteria            | Speed | Storage<br>Capacity | Accuracy | Usability | Aesthetic | Maintainability | Compactness | Reliability |
| Script and Da | atabase             | 0.090 | 0.143               | 0.140    | 0.260     | 0.2       | 0.2             | 0.286       | 0.2         |
| A.I.          |                     | 0.607 | 0.714               | 0.574    | 0.633     | 0.6       | 0.6             | 0.140       | 0.6         |
| Digital Libra | ury                 | 0.303 | 0.143               | 0.286    | 0.106     | 0.2       | 0.2             | 0.574       | 0.2         |

| {W} Criteria |  |
|--------------|--|
| Weights      |  |
| 0.218        |  |
| 0.099        |  |
| 0.036        |  |
| 0.123        |  |
| 0.333        |  |
| 0.051        |  |
| 0.099        |  |
| 0.041        |  |

| Concept                | Alternative<br>Value |
|------------------------|----------------------|
| Script and<br>Database | 0.184                |
| A.I.                   | 0.571                |
| Digital Library        | 0.245                |



